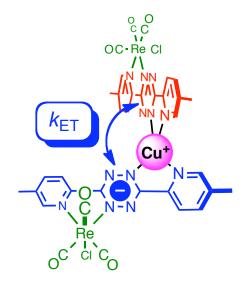
Ligand-Centered Mixed-Valency: Tetrazines Bridged by Cu(I)


<u>Kumar Parimal¹</u>, John G. Goeltz², Shubham Vyas³, Jonathan A. Karty¹, Christopher M. Hadad³, Clifford P. Kubiak², Amar H. Flood^{1,*}

¹Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington,

IN 47401, USA

²Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, M/C 0358, La Jolla, CA 92093, USA

³Department of Chemistry, The Ohio State University, 100 west 18th Avenue, Columbus OH 43210, USA

The first verified example of ligand mixed-valency is presented in which two redoxactive tetrazine ligands are connected by a bridging Cu(I) ion. The ligand used, 3,6-bis-(5-methylpyridyl)-1,2,4,5-terazine, is monocoordinated to a {Re(CO)₃Cl} moiety, which serves as an IR-active group. A large separation (0.5 V) between consecutive reduction of the two ligands corresponds to a large comproportionality constant ($K_c \sim 10^8$) indicating the thermodynamic stability of the mixed-valent (MV) state, i.e., (L⁻)-M-(L⁻). Chemical reduction of the complex provides the spectroscopic evidence ($\lambda_{max} = 2720$ nm, $\varepsilon = 1120$ M⁻¹ cm⁻¹, FWHM = 1260 cm⁻¹) for mixed-valency. Based on Marcus-Hush theory, the coupling constant was found to be small compared to its inorganic counterpart but the rate for electron transfer was found to be very large ($k_{ET} > 10^{11}$ s⁻¹). Variable temperature IR spectroscopy suggests that a Class III MV state is possible.